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Small area estimates of the low work intensity indicator
at voivodeship level in Poland
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ABSTRACT

The EU Statistics on Income and Living Conditions (EU-SILC) has provided annual esti-
mates of the number of labour market indicators for EU countries since 2003, with an almost
exclusive focus on national rates. However, it is impossible to obtain reliable direct estimates
of labour market statistics at low levels based on the EU-SILC survey. In such cases, model-
based small area estimation can be used. In this paper, the low work intensity indicator for
the spatial domains in Poland between 2005-2012 was estimated. The Rao and You (1994),
Fay and Diallo (2012), and Marhuenda, Molina and Morales (2013) models were applied.
The bootstrap MSE for the discussed methods was proposed. The results indicate that these
models provide more reliable estimates than direct estimation.

Key words: EU-SILC, low work intensity, labour market, small area estimation, temporal
models, spatio-temporal models.

1. Introduction

Sample surveys conducted by National Statistical Institutes (NSIs) are in most cases rep-
resentative at the national or region level (in particular at NUTS 1 level). In more detailed
domains, such as states/voivodeships (NUTS 2) or subregions (NUTS 3), a small sample
size does not allow for obtaining precise and accurate estimates of socio-economic indi-
cators. Therefore, one needs methods that may provide more reliable estimates. For that
purpose small area estimation (SAE) is often used. SAE makes it possible to estimate char-
acteristics even if the sample is small, direct estimation is not reliable or domains are not
observed in the sample. The underlying idea of SAE is to account for random effects in
studied domains and „borrow strength” from auxiliary variables, over time or in space.

Small area estimation methods are widely used in many statistical domains. Social sci-
ences examples include the labour market (López-Vizcaíno, Lombardía and Morales 2013),
poverty (Molina and Rao 2010; Szymkowiak, Młodak and Wawrowski 2017) and business
statistics (Chandra, Chambers and Salvati 2012; Dehnel and Wawrowski 2020). Due to
limited access to data many applications cover estimation for only one year.

The main goal of the study described in this article was to estimate the low work in-
tensity indicator (LWI) in the domains defined by the level of voivodeships (NUTS 2) in

1Computer Science Research Centre, Research Network Łukasiewicz - Institute of Innovative Technologies
EMAG, Poland. E-mail: lukasz.wawrowski@emag.lukasiewicz.gov.pl. ORCID: https://orcid.org/0000-0002-
1201-5344.
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Poland between 2005 and 2012 with acceptable precision measured by coefficient of vari-
ation (CV). The LWI indicator, at-risk-of-poverty and material deprivation indicators are
required by Eurostat as part of Europe 2020 strategy. The current official information is
available only at the national and the NUTS 1 level in Poland and other EU states. At the
more detailed domains small sample size results in big variances of obtained estimates. To
achieve the main goal we discuss three recent small area models — Rao and You (1994),
Fay and Diallo (2012), and Marhuenda, Molina and Morales (2013) — and then apply them.
The first two models take into account temporal effects, while the third also incorporates
spatial effects.

The article has the following structure. First, we present the variable of interest — the
low work intensity indicator. The third section provides the notation for direct and model-
based estimation. We also calculate mean square error (MSE) and model diagnostics, and
present Generalized Inflation Factors in the context of SAE. The fourth section describes
the EU-SILC survey and data from 2005 to 2012. In the fifth section we present the results
and model diagnostics. The article ends with a summary.

2. Low work intensity

2.1. EU-SILC survey

The survey to collect EU Statistics on Income and Living Conditions (EU-SILC) was launched
in 2003. The main aim of the survey was to deliver comparable data about income, poverty
and living conditions of households in EU Member States. EU-SILC data are collected
using a questionnaire in face-to-face interviews covering demography, education, health,
housing conditions, economic activity, and more importantly, the level and sources of house-
hold incomes. EU-SILC is a sample-based, representative survey, in which a household is
the basic statistical unit. In addition, every household member above 16 is also surveyed.

Various social cohesion indicators are estimated based on the EU-SILC survey. Several
of them are used to monitor Europe 2020 strategy and to calculate the fraction of people
living in households with very low work intensity (Statistics Poland 2014).

2.2. Low work intensity indicator

According to Eurostat, “the indicator of persons living in household with low work intensity
is defined as the number of persons living in a household where work intensity is below a
threshold set at 20%”. Intensity of work is defined as the number of months that all working
age household members (aged between 18 and 64) worked during the reference year divided
by the total number of months that could theoretically be worked within the household. This
means that households with low work intensity caused by different factors do not utilize
their available time for work. Time spent at work is defined by Eurostat as:

• months in paid employment (full-time or part-time),
• paid internships and trainings,
• self-employment, with or without employees,
• unpaid work in a family business (helping family members).
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To calculate the low work intensity indicator the total number of hours worked per week
for each respondent is computed. For part-time employees, “the number of months in terms
of full time equivalents is estimated on the basis of the number of hours usually worked
at the time of the interview” (Mélina and Emilio, 2012). Eurostat set a threshold for the
low work intensity at the level of 20%. This value refers to the expected risk of poverty in
households with low work intensity. Nevertheless, Ward and Ozdemir (2013) argued that
the threshold should be set slightly higher. Equation (1) presents the last stage of calculating
the low work intensity indicator for the domains.

LWIdt =
∑

ndt
i=1 I(WIi,dt < 0.2)di,dt

∑
ndt
i=1 di,dt

, (1)

where: WIi,dt is work intensity of i-th household member in d-th domain at time t, di,dt is
calibrated weight of i-th household member, I(•) is an indicator function with two values
{0,1}.

3. Notation for estimators and diagnostics

The classic Fay and Herriot (1979) area-level model does not take into account temporal
nor spatial random effects. Therefore, when a panel survey data are used for estimation, the
correlation between years should not be neglected. Thus, for the purpose of estimating LWI
we applied two area-level small area estimators that take into account temporal random
effects (Rao and You, 1994; Fay and Diallo, 2012) and spatio-temporal random effects
(Marhuenda, Molina and Morales, 2013) for NUTS 2 level. The motivation for choosing
these estimators is the observed strong temporal effect for NUTS 2 (voivodeships) in Poland.
In addition, we would like to verify whether including the spatial effect in the model leads
to better estimates.

3.1. Direct estimator

Let Ω = {1, . . . ,N} denote the target population of size N. From this population we draw a
sample according to the sampling scheme s⊆Ω of size n. Let Ωdt denote target population
in domain (e.g. area), d = 1, ...,D denote a domain and t = 1, ...,T denote the time when
the survey was conducted. Next, πdti denotes the inclusion probability of i-th unit in d-th
domain at time t in the corresponding domain sample sdt and ddti = π

−1
dti the corresponding

sampling weight. The EU-SILC survey uses the calibration approach proposed by Deville
and Särndal (1992) to account for non-response. Thus, wdti = λdtiddti denotes a calibration
weight and λdti is the scaling factor for sampling weights ddti. Let y denote the target
variable (low work intensity) defined as follows:

ydti =

{
1 if the household suffers from low work intensity,

0 otherwise.
(2)

Therefore, a design-unbiased direct estimator of ȳdt is the Horvitz-Thompson (HT) es-
timator for the subpopulation Ωdt , given by:
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ˆ̄ydt = ∑
i∈sdt

wdtiydti/ ∑
i∈sdt

wdti. (3)

Because NUTS 2 level was used for stratification, the variance of ˆ̄ydt was estimated
using a nonparametric bootstrap method as follows. Separately for each time t according
to the sampling scheme, in particular taking into account strata h = 1, ...,H, draw a sample
with replacement B times. For each sample b calculate the bootstrapped weight defined by
the equation (4):

wb
dti = wdti

nh,dt

nh,dt −1
mb

dti, (4)

where nh,dt denotes the number of sampled units in stratum h, domain d, at time t in the
original sample and mb

dti denotes the number of times that i-th unit was included in sample
b. Finally, the bootstrap estimator of the variance of ˆ̄ydt for the domain Ωdt is derived by:

V̂ ( ˆ̄ydt) = ψ̂dt =
1

B−1

B

∑
b=1

( ˆ̄yb
dt − ˆ̄ydt)

2, (5)

where ˆ̄yb
dt = ∑i∈sdt

wb
dtiydti/∑i∈sdt

wb
dti. For the sake of clarity, we will use ψdt for the known

sampling variance.

3.2. Rao and Yu (1994) model

Rao and You (1994) proposed an extension of Fay and Herriot (1979) model, which ac-
counts for domains defined as time-series and cross-sectional classification. The model
assumes two random effects — the domain effect, which is constant in time, and autocor-
relation of domain effects in time. The autocorrelation is assumed to be the same between
domains.

To enable comparison, we will apply the notation used in Marhuenda, Molina and
Morales (2013). Therefore, in the first stage, Rao and You (1994) model assumes the fol-
lowing sampling model:

ȳdt = µdt + edt (6)

where edt
ind.∼ N(0,ψdt), where ψdt is the known sampling variance. The second stage (the

linking model) µdt is assumed to follow a linear mixed model given by:

µdt = X ′dtβ +u1d +u2dt (7)

where Xdt is the matrix of auxiliary variables (fixed effects), u1d
ind.∼ N(0,σ2

1 ) denotes the
random effect for domain at time t = 1 and constant in time u1d = u1d,t=1 = u1d,t=2 =

... = u1d,t=T . The second random component denoted by u2dt is assumed to follow the
autoregressive process AR(1) with σ2

2 and ρ2, and is given by:

u2dt = ρ2u2d,t−1 + ε2dt , (8)
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where |ρ2| < 1 and ε2dt
ind.∼ N(0,σ2

2 ). We use ρ2 for autocorrelation to be consistent with
the number of random effects and for the consistency with the other models. In addition, let
θ = (σ2

1 ,σ
2
2 ,ρ2)

′ be the vector of unknown parameters involved in the covariance structure
of the model. Finally, the BLUP estimator of ȳdt obtained by Rao and You (1994) through
the method of moments is given by:

µdt = X ′dt β̃ +(σ2
1 1′T +σ

2
2 γT )(Σd +σ

2
2 Γ+σ

2
1 1T 1′T )

−1(yd−Xd β̃ ), (9)

where, for simplicity, we use u1d = u1, u2dt = u2 and ρ2 = ρ ,

• Γ is a symmetric matrix T ×T with elements ρ |i− j|)/1(−ρ2),
• V d = Σd +σ2

2 Γ+σ2
1 1T 1′T =Cov(yd),

• V = diag(V d) =Cov(y),
• β̃ = (X ′V−1X)−1X ′V−1y,

When θ̂ = (σ̂2
1 , σ̂

2
2 , ρ̂2) is known, the EBLUP is given by

µ̂dt = X ′dt β̃ +(σ̂2
1 1′T + σ̂

2
2 γ̂T )(Σ̂d + σ̂

2
2 Γ̂+ σ̂

2
1 1T 1′T )

−1(yd−Xd β̃ ). (10)

The notation of EBLUP (10) can be simplified in equation (7) and is given by (11).
Moreover, rewriting the equation (10) as (7) enables comparison with Marhuenda, Molina
and Morales (2013) and specifies that the model can be estimated using the Henderson
(1975) approach.

µ̂dt = X ′dtβ + û1d + û2dt . (11)

3.3. Fay and Diallo (2012) model

Another extension of Fay and Herriot (1979) was proposed by Fay and Diallo (2012) and
Fay, Planty and Diallo (2013). Fay and Diallo (2012) proposed a univariate and Fay, Planty
and Diallo (2013) a multivariate dynamic small area model that takes into account auto-
correlation of random effects for domains. The Fay and Diallo (2012) model also extends
Rao and You (1994) by assuming nonstationarity of the domain effect, thus the effect is not
constant over time. Fay and Diallo (2012) in the first stage assume a sampling model given
by:

ȳdt = µdt + edt (12)

where edt
ind.∼ N(0,ψdt), where ψdt is known sampling variance. The second stage (the

linking model) assumes a linear mixed model given by the following equation:

µdt = X ′dtβ +u1dt +u2dt (13)

where u1dt = ρ
t−1
2 u1d and u1d

ind.∼ N(0,σ2
1 ) is the random effect for d-th domain at time

t = 1. The random effect u1d is scaled by ρ2, which denotes the autocorrelation for the
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second random effect u2dt . u2dt is assumed to follow AR(1) process, as does the Rao and
You (1994) model, and is defined below:

u2dt = ρ2u2d,t−1 + ε2dt , (14)

where |ρ2| < 1 and ε2dt
ind.∼ N(0,σ2

2 ). The main difference between the Fay and Diallo
(2012) and Rao and You (1994) approach is that the former does not constrain |ρ2|< 1 and
avoids discontinuity at ρ2 = 1. When ρ2 > 1 a divergence between domains is observed. Let
θ = (σ2

1 ,σ
2
2 ,ρ2)

′ be the vector of unknown parameters involved in the covariance structure
of the model. The BLUP estimator for µdt is calculated in the same fashion as (9):

µdt = x′dt β̃ +(σ2
1 γT,u1 +σ

2
2 γT,u2)V−1

d (yd−Xd β̃ ), (15)

where the elements are defined as follows (for simplicity u1 = u1d , u2 = u2dt and ρ2 = ρ is
used):

• Γu1 is a symmetric matrix T ×T where Γu1(1, j) = 0 and Γu1(i, j) = ρ( j−i)
∑

i−1
i′=1 ρ(2i′−2)

for 1 < i≤ j,
• Γu2 is a symmetric matrix T ×T of elements ρ i+ j−2,
• V d = Σd +σ2

1 Γu1 +σ2
2 Γu2 =Cov(yd),

• V = diag(V d) =Cov(y),
• β̃ = (X ′V−1X)−1X ′V−1y,
• γT,u1 is T column of matrix Γu1,
• γT,u2 is T column of matrix Γu2.

Finally, when θ̂ = (σ̂2
1 , σ̂

2
2 , ρ̂2)

′ is known, the EBLUP of µdt is given by

µ̂dt = x′dt β̃ +(σ̂2
1 γ̂T,u1 + σ̂

2
2 γ̂T,u2)V̂

−1
d (yd−Xd β̃ ), (16)

or, following Henderson (1975) and Marhuenda, Molina and Morales (2013), can also be
written as:

µ̂dt = X ′dtβ + û1dt + û2dt , (17)

where û1dt = ρ̂
t−1
2 û1d . For the proof of (15) and mathematical details of the model (16)

refer to Fay and Diallo (2012).

3.4. Marhuenda, Molina and Moralez (2013) model

Finally, in order to verify whether to include the spatial effect, we applied the spatio-
temporal model proposed by Marhuenda, Molina and Morales (2013). The model assumes
two random effects — spatially correlated and temporally correlated domain effect. As in
the previous models, in the first stage it assumes:

ȳdt = µdt + edt (18)
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where edt
ind.∼ N(0,ψdt), where ψdt is the known sampling variance. In the second stage (the

linking model) a linear mixed model is assumed and is given by:

µdt = X ′dtβ +u1d +u2dt (19)

where u1d denotes a spatial random effect that follows the SAR(1) process with variance
σ2

1 , spatial autocorrelation ρ1 and row-standardized proximity matrix W = (wd,k). Such a
proximity matrix is created based on neighbours matrix W 0. The matrix W is derived from
the matrix W 0 by dividing each row element by the row total (Bivand, Pebesma and Gomez-
Rubio, 2013). We assume that the spatial representation of domains does not change over
time (borders are the same). The SAR(1) process is given by:

u1d = ρ1 ∑
d 6=k

wd,ku1k + ε1d , (20)

where |ρ1| < 1, and ε1d
ind.∼ N(0,σ2

1 ). The second random effect u2dt is assumed to follow
the AR(1) process with σ2

2 and ρ2 and is given by the following equation:

u2dt = ρ2u2d,t−1 + ε2dt , |ρ2|< 1,ε2dt
ind.∼ N(0,σ2

2 ). (21)

Let θ =(σ2
1 ,σ

2
2 ,ρ1,ρ2)

′ be the vector of unknown parameters involved in the covariance
structure of the model. After the estimation of θ̂ = (σ̂2

1 , σ̂
2
2 , ρ̂1, ρ̂2)

′ the EBLUP estimator
(19) of ȳdt proposed by Marhuenda, Molina and Morales (2013) is given by:

µ̂dt = X ′dtβ + û1d + û2dt . (22)

In contrast to Rao and You (1994) and Fay and Diallo (2012), Marhuenda, Molina and
Morales (2013) estimated the parameters using the Henderson (1975) approach instead of
the method of moments. Details about the estimation of the model (19) can be found in
Marhuenda, Molina and Morales (2013) and Molina and Marhuenda (2015).

Shortly summarizing the models presented, the following differences can be indicated.
Rao and You model assumes stationarity for time series and two uncorrelated random ef-
fects. In Fay and Diallo model a time series is non-stationary and random effects are cor-
relation. Marhuenda, Molina and Morales model takes into account SAR(1) process for the
first random effect and AR(1) process for the second random effect.

3.5. MSE calculation

Rao and You (1994) and Fay and Diallo (2012) obtained MSE for estimators (16) and (10)
by deriving a direct formula using the method of moments based on the Prasad and Rao
(1990) approach. In contrast, Marhuenda, Molina and Morales (2013) proposed a paramet-
ric bootstrap to estimate MSE of (22). The motivation for such an approach is based on
the González-Manteiga et al. (2008) and Molina, Salvati and Pratesi (2009) papers, which
discussed estimation of MSE through the parametric bootstrap.

Therefore, to make MSE comparable between the models we applied the parametric
bootstrap approach for each model. In the case of Marhuenda, Molina and Morales (2013)
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model, the parametric bootstrap was available. For Rao and You (1994) and Fay and Di-
allo (2012) we developed a procedure to estimate MSE under the parametric bootstrap.
The details can be found in Table 1. The notation used in the table is consistent with the
Marhuenda, Molina and Morales (2013) article. The steps (3), (5), (7) and (8) are the same
for all models.

3.6. Diagnostics measures for models

3.6.1 Model comparison measures

In order to compare and evaluate the models we applied several measures. Firstly, we used
cAIC criterion (Greven and Kneib, 2010), pseudo-R2 and Wald statistic. These measures
were used to compare and verify which model is the most suitable for estimation of the low
work intensity indicator. In addition, for practical and descriptive reasons, pseudo-R2 for
each model was computed and is given in (23). The inclusion of the pseudo-R2 measure
is motivated by the ease of interpretation as a measure of goodness of fit and end users’
experiences with linear models. However, this measure is rarely presented in the context of
small area models. For other pseudo-R2 measures for linear mixed models, see Nakagawa
and Schielzeth (2013), and for Wald statistic denoted by W refer to Brown et al. (2001).
Calculated information criteria are given in (23):

cAIC =−2×LogLik+2×(trace(H)+1),

pseudo−R2 = Var(µ̂dt)/Var( ˆ̄ydt),

W = ∑( ˆ̄ydt − µ̂dt)
2/(Var( ˆ̄ydt)+Var(µ̂dt)),

(23)

where LogLik is the value of log-likelihood estimated through REML estimation of the vari-
ance components, p denotes the number of model parameters (fixed and for random effects),
n denotes the number of observations, trace(H) trace of hat matrix given by equation (24)
and Var denotes simple random sampling variance.

trace(H) =trace((X ′dtV (θ)−1Xdt)
−1X ′dtV (θ)−1V eV (θ)−1Xdt)

+n− trace(V eV (θ)−1)
(24)

Bias correction of conditional Akaike information criterion is given by equation (24).
V e in this equation denotes variance matrix of random error. Calculation of this term is
possible with cAIC4 R package written by Saefken et al. (2018). Conditional Akaike
information criterion depends on the structure of the model used so two other metrics in
(23) were proposed.

3.6.2 Collinearity diagnostics

To evaluate the models we investigated collinearity measures using generalized variance
inflation factors (GVIF) proposed by Fox and Monette (1992). The GVIF measure is limited
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Table 1: Calculation of parametric bootstrap MSE in Rao and Yu (1994), Fay and Diallo
(2012) and Marhuenda, Molina and Moralez (2013) models

Step Rao and Yu (1994) Fay and Diallo (2012) Marhuenda, Molina and
Moralez (2013)

1 Using the available data
{( ˆ̄ydt ,Xdt), t = 1, . . . ,T,d =
1, . . . ,D}, fit the Rao and
You (1994) model to obtain
model parameter estimates
β̂ , σ̂1

2 , σ̂2
2 and ρ̂2.

Using the available data
{( ˆ̄ydt ,Xdt), t = 1, . . . ,T,d =
1, . . . ,D}, fit the Fay and
Diallo (2012) model to ob-
tain model parameter esti-
mates β̂ , σ̂1

2 , σ̂2
2 and ρ̂2.

Using the available
data {(δ̂ DIR

dt ,xdt), t =
1, . . . ,T,d = 1, . . . ,D}, fit
the Molina, Marhuenda,
Molina and Morales (2013)
model to obtain model
parameter estimates β̂ , σ̂1

2 ,
ρ̂1, σ̂2

2 and ρ̂2.
2 Generate bootstrap

area effects {u∗(b)1d ,d =
1, . . . ,D, t = 1, ...,T} using
σ̂2

1 as true values of pa-

rameters σ2
1 that {u∗(b)1d =

u∗(b)1d,t=1 = ...= u∗(b)1d,t=T }.

Generate boot-
strap area effects
{u∗(b)1d ,d = 1, . . . ,D, t = 1}
with known σ̂2

1 as true
value of parameter σ2

1 .

Then, compute {u∗(b)1dt =

ρ
t−1
2 u∗(b)1d , t = 2, ...,T}

where ρ̂2 is the true value
of ρ2.

Generate bootstrap
area effects {u∗(b)1d ,d =
1, . . . ,D, t = 1, ...,T}, from
the SAR(1) process given
in (20), using (σ̂2

1 , ρ̂1)
as true values of parame-
ters (σ2

1 ,ρ1) and u∗(b)1d =

u∗(b)1d,t=1 = ...= u∗(b)1d,t=T .

3 Independently of {u∗(b)1d } and independently for each d, generate bootstrap time

effects {u∗(b)2dt , t = 1, . . . ,T}, from the AR(1) process given in (8), with (σ̂2
2 , ρ̂2)

acting as true values of parameters (σ2
2 ,ρ2).

4 Calculate true boot-
strap quantities, µ

∗(b)
dt =

X ′dt β̂ +u∗(b)1d +u∗(b)2dt .

Calculate true boot-
strap quantities, µ

∗(b)
dt =

X ′dt β̂ +u∗(b)1dt +u∗(b)2dt .

Calculate true boot-
strap quantities, µ

∗(b)
dt =

X ′dt β̂ +u∗(b)1d +u∗(b)2dt .

5 Generate errors e∗(b)dt
ind.∼ N(0,ψdt) and obtain bootstrap data from the sampling

model, ˆ̄y∗(b)dt = µ
∗(b)
dt + e∗(b)dt

6 Using the new bootstrap
data {( ˆ̄y∗(b)dt ,Xdt), t =
1, . . . ,T,d = 1, . . . ,D}, fit
the Rao and You (1994)
model (7) - (11) to obtain
the bootstrap EBLUPs,
µ̂
∗(b)
dt

Using the new bootstrap
data {( ˆ̄y∗(b)dt ,Xdt), t =
1, . . . ,T,d = 1, . . . ,D},
fit Fay and Diallo (2012)
model (13) - (17) to obtain
the bootstrap EBLUPs,
µ̂
∗(b)
dt

Using the new bootstrap
data {( ˆ̄y∗(b)dt ,Xdt), t =
1, . . . ,T,d = 1, . . . ,D}, fit
Marhuenda, Molina and
Morales (2013) model
(19) - (22) to obtain the
bootstrap EBLUPs, µ̂

∗(b)
dt

7 Repeat steps (1)-(6) for b = 1, . . . ,B, where B is a large number.

8 Calculate parametric bootstrap MSE according to the following formula:
MSE(µ̂dt) =

1
B ∑

B
b=1(µ̂

∗(b)
dt −µ

∗(b)
dt )2

to fixed effects (Xdt ) and does not account for the variance structure of random effects.
Thus, it overestimates the collinearity between auxiliary variables Xdt . Other approaches to
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estimate VIF in the context of complex surveys are discussed by Liao and Valliant (2012)
and Li and Valliant (2015) assuming a linear model with known sampling variances.

Therefore, we modified GVIF to be conditional on the Fay-Herriot small area model
covariance matrix of y given by: V (θ) = ZV (θ)uZ′+V e, where Z is a matrix of random
effects, V (θ)u denotes block-diagonal covariance structure for random effects and V e is a
diagonal matrix of known sampling variances. Let Σx(θ) denote the variance-covariance
matrix for the fixed effect Xdt defined by the equation (25)

Σx(θ) = (X ′dtV (θ)−1Xdt)
−1, (25)

and the estimator of (25) is given by

Σ̂x = Σ̃x(θ̂) = (X ′dtV (θ̂)−1Xdt)
−1, (26)

where V (θ̂) is an estimated covariance structure of the small area model. The V (θ̂) can
differ between the models and depends on the assumed underlying structure of random
effects. To calculate conditional GVIF Σ̂x need to be transformed into a correlation matrix,
which we denote as R(θ). The estimator of R(θ) is given by the following transformation
of Σ̂x

R(θ̂) = D−1
Σ̂xD−1, (27)

where D = diag(
√

diag(Σ̂x)). Finally, the GVIF conditional on V (θ̂) for each variable of
the fixed effect is given by

GV IF(xk|V (θ̂)) =
det(R(θ̂)k,k)×det(R(θ̂)−k,−k)

det(R(θ̂))
(28)

where xk denotes k-th variable from the auxiliary matrix Xdt , det denotes the determinant
of a matrix, R(θ̂)k,k denotes matrix with k-th variable and R(θ̂)−k,−k without k-th variable.
According to Chatterjee and Price (1991), it is assumed that values GV IF(xk|V (θ̂)) exceed-
ing 10 are to be highly correlated with other fixed effects. Thus, a given variable should be
removed from the small area model.

4. Data utilized in the study

4.1. EU-SILC data

The study was based on EU-SILC data from 8 years: 2005 to 2012. As mentioned earlier,
the EU-SILC survey is conducted to collect information on income, poverty and other as-
pects of living conditions of households in European countries. The sample size is set to
be representative at the national level. However, in Poland the sample size is big enough to
publish information about households at the regional level (NUTS 1) as well.

The number of households in the sample varies from 317 (Opolskie Voivodeship in
2009) to 2,212 (Slaskie Voivodeship in 2005). According to the sampling scheme applied,
the sample size was distributed proportionally to the domains in the voivodeship. It should
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be noticed that the sample of households in the survey decreases from year to year. An
average decrease compared to the base year 2005 is 20%. The change is due to several
causes. First of all, EU-SILC is a panel and thus requires respondents to participate in the
survey multiple times. In addition, non-response is present, which decreases the sample
size. Coefficient of variation for direct estimates varies from 5.4% for Slaskie Voivodeship
in 2005 to 37.4% for Podlaskie in 2010. For these reasons the sample size in the domains
of interest is not acceptable for deriving direct estimates.

4.2. Auxiliary variables

Small area estimation at area-level requires auxiliary information about study domains. Rao
and Molina (2015) recommend using register or census data that are free from sampling er-
rors. Therefore, to estimate models, we collected socio-economic data from the Local Data
Bank maintained by Statistics Poland. The main criteria for the choice of variables were
availability at NUTS 2 level for the years 2005-2012 and the source of data, in particular
registers. Several variables were considered and finally the following ones were chosen:
registered unemployment rate, working and post-working age people and the number of
people in NUTS 2 regions.

The registered unemployment rate is calculated as the ratio of the number of registered
unemployed persons to the economically active civilian population. Working and post-
working age was used to create two ratios. First, the number of people of working age
(aged 15-64) divided by the number of people of post-working age (65 and over). This
measure can be interpreted as describing how many independent workers have to provide
for one pensioner. The second ratio has the same numerator but the denominator is the
number of people without additional criterion (the whole population).

5. Estimation of low work intensity indicator at voivodeship level

In this section we describe the results and provide diagnostics for each model. All the calcu-
lations were done in R using the following packages: sae (Molina and Marhuenda, 2015),
sae2 (Fay and Diallo, 2015), metafor (Viechtbauer, 2010). For the sake of simplicity, we
will use RY for Rao and You (1994), FD for Fay and Diallo (2012) and MMM for Marhuenda,
Molina and Morales (2013) model.

5.1. Comparison of models

Table 2 contains a comparison of the parameters and statistics for all the models. RY and FD
had 7 parameters, while MMM had a total of 8 parameters. The fixed effects in all the models
are significant and have expected signs. Slight differences can be observed in the level of
the intercept in FD. In all the models registered unemployment rate is positively correlated
with the LWI indicator: a rise in the level of registered unemployment is associated with
higher LWI. When the ratio of the post-working age to working age population rises, the
LWI also rises and the ratio of the working-age population to the whole population has the
expected sign: if the ratio grows, the LWI decreases. Therefore, we can conclude that the
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auxiliary variables are good predictors for the LWI indicator and do not differ between the
models.

The second group of parameters are variances of random effects. For the sake of sim-
plicity, standard deviations σu∗ are used instead of variances σ2

u∗. In RY the AR(1) effect
dominates the domain effect and is responsible for almost all the variance of random ef-
fects. In contrast, in FD and MMM the domain effect is higher than the AR(1) process of
random effects. In the case of the FD model, this means that the domain effect is not con-
stant over time (is nonstationary) and is higher in the first year of the survey but decreases
over time by 0.9407t−1. On the other hand, in the MMM model the domain effect is spatially
correlated and the variance of this random effect is higher than the AR(1) effect.

In all of the models the AR(1) effect has a strong autocorrelation (ρ2), which means that
the effects within domains depend strongly on what happened in the previous year. The RY
and FD models indicate that this autocorrelation is over 0.9 while, in the case of MMM, we
can observe a slightly smaller value. In the case of the MMM model, this is due to the second
autocorrelation parameter (ρ1), which is associated with the spatial effect (SAR(1)). The
value of ρ1 = 0.4866 indicates that a moderate spatial effect between NUTS 2 is observed,
which is smaller than the AR(1) autocorrelation.

If we compare the model statistics concerning information criteria and R2 we can ob-
serve slight differences between the models. All the models explained almost 85% of the
variance of the direct estimator. The RY and FD models have similar information criteria,
while the MMM model differs slightly. However, the differences between the model statistics
do not clearly indicate which model should be recommended. Nonetheless, if we compare
all the statistics in Table 2 the model proposed by Marhuenda, Molina and Morales (2013)
seems to be the most reasonable due to the significant spatial effect.

The comparison of EBLUPs for the RY, FD and MMM models with the direct estimator
indicates that the model-based estimation is coherent with direct estimation. Pearson cor-
relation coefficients for all estimates are above 0.9. EBLUPs obtained for the models do
not differ significantly; however, compared to direct estimates, we can observe differences
between estimates.

The differences between model-based and direct estimates are visible in Figure 1. LWI
decreases over time from over 15% to below 10%. The solid line indicates direct estimates
and dashed lines represent model-based estimates. In general, we can observe a similar trend
in all NUTS 2 regions in Poland, but at different levels of intensity. In addition, model-based
estimates are more stable over time than direct estimates. In some voivodeships (Lubuskie,
Podlaskie or Zachodniopomorskie) there is a clearly visible rise in LWI after 2008, which
can be associated with the start of the 2008 crisis.

The biggest differences in the LWI indicator can be observed for Lubuskie and Opolskie
Voivodeships. Direct estimates for Lubuskie indicate that from 2008 to 2010 LWI increased,
while model-based estimates indicate that the increase was smaller and was only present
between 2009 and 2010. These differences, however, may be due to the sampling error,
which is higher at NUTS 2 level. It is possible that in the case of Lubuskie specific units
were included in the sample in 2008 and took part in the EU-SILC survey until 2010. In
Opolskie Voivodeship, there was a considerable increase in direct estimates between 2009
and 2010, followed by a decrease. These differences may also be due to the sampling error,
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Table 2: Summary of the estimated model parameters and statistics. Standard deviations
are given in parentheses after the mean values.

Parameters/Models RY FD MMM
Model parameters – fixed effects
Intercept 1.28 (0.27) 1.47 (0.30) 1.28 (0.29)
Register Unemployment Rate 0.37 (0.07) 0.35 (0.07) 0.38 (0.07)
Working / Post-Working Ratio 0.09 (0.01) 0.09 (0.01) 0.09 (0.01)
Working age / Population Ratio -2.49 (0.46) -2.80 (0.49) -2.49 (0.46)
Model parameters – random domain effects variances
σ1 Domain effect 0.00 (0.11) 0.04 (0.03) 0.03 (0.02)
σ2 AR(1) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
Model parameters – random domain effects autocorrelation
ρ1 SAR(1) - - 0.47 (0.00)
ρ2 AR(1) 0.98 (0.26) 0.94 (0.02) 0.88 (0.00)
Model statistics

REML LL 327.72 329.13 336.69
cAIC -582.90 -591.53 -581.96
pseudo R2 83.97 84.57 84.43
W (χ2

0.05 = 155.40) 43.76 47.49 43.45
Degrees of freedom 7 7 8

especially given that the region of Opolskie is characterized by the highest level of the
standard error of direct estimates.

According to Brown et al (2001) the difference between direct estimates and model-
based estimates should be not significant. Figure 1 shows that these differences are rather
small. Pearson correlation coefficient for direct and RY model estimates vary from 0.3856 to
0.9886 with average equal to 0.9226. For FDmodel correlations are in the range [0.3600;0.9873]
(average 0.9192) while for estimates derived from MMM the model minimum value is equal
to 0.3906, maximum to 0.9894 and average to 0.9239. In all cases the lowest values were
observed in Lubuskie voivodeship and the highest in Śląskie Voivodeship. The highest simi-
larity of estimates measured by average correlation coefficient was obtained for Marhuenda,
Molina and Moralez (2013) model. These results show consistency of direct and small area
estimates.

5.2. Comparison of coefficient of variations of estimates

The distribution of the CV is given in Table 3. An increase in CV over time was observed,
which is due to increasing non-response and the respondent burden in the EU-SILC survey.
On average, CV for direct estimates is equal to 15.77%.

In comparison to model-based estimation, the CV for direct estimation increases more
rapidly, while the CV for RY, FD and MMM models increase more steadily. Moreover, CVs
differ depending on the NUTS 2 unit. For example, in Opolskie and Podlaskie CV is sig-
nificantly higher in comparison to other NUTS 2 units in Poland, mainly owing to smaller
sample sizes. Therefore, especially for these regions, the direct estimator is not reliable.
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Figure 1: Comparison of direct, Rao and Yu (1994), Fay and Diallo (2012) and Marhuenda,
Molina and Moralez (2013) models estimates

Table 3: Comparison of direct, Rao and Yu (1994), Fay and Diallo (2012) and Marhuenda,
Molina and Moralez (2013) models coefficient of variations

Model Min Q1 Median Mean Q3 Max
Direct 5.37 11.62 14.76 15.77 18.55 37.38
RY 4.01 6.91 8.38 8.99 10.39 20.26
FD 3.99 6.92 8.36 9.04 10.33 21.74
MMM 4.19 6.84 8.55 9.09 10.45 20.57

CVs for all the models of interest are lower in comparison to the direct estimator. On
average, the CV for each model is approximately 9%, which indicates that the model-based
approach provides more reliable estimates. However, as was the case with model diagnos-
tics, models RY, FD and MMM provide similar level of precision and, on average, the RY model
is slightly better in comparison to the other models. The lowest CV can be observed for
Slaskie and Mazowieckie Voivodeships and the highest for Podlaskie and Opolskie. What
is worth noticing is model-based estimation provides more reliable estimates over time even
if the non-response increases.
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5.3. Diagnostics of the models

Table 4 contains information about GVIF calculated using formula (28). The first three
columns refer to the model in question and the last one, denoted by WOLS, refers to
weighted ordinary least square regression, where weights are the inverse of sampling er-
rors. Results indicate that GVIF values for all variables in the RY, FD and MMM models are
close to 1.3, which is lower than the threshold of 4. Moreover, as expected, the values are
smaller than those observed in weighted OLS. The inclusion of the estimated covariance
matrix accounts for the uncertainty.

Table 4: Generalized variance inflation measures for auxiliary variables used in Rao and
Yu (1994), Fay and Diallo (2012) and Marhuenda, Molina and Moralez (2013) models

Variable RY FD MMM WOLS
Register Unemployment Rate 1.30 1.31 1.29 1.42
Working / Post-Working Ratio 1.31 1.33 1.29 2.05
Working age / Population Ratio 1.44 1.51 1.37 1.54

6. Conclusions

Application of three proposed models — Rao and You (1994), Fay and Diallo (2012), and
Marhuenda, Molina and Morales (2013), allows to obtain more reliable (in the sense of
CV) estimates in previously unpublished domains. All models take into account auxiliary
variables, temporal effect, however Marhuenda, Molina and Morales (2013) also deal with
spatial information. The registered unemployment rate showed the strongest relation with
the indicator. Based on the results and strong spatial autocorrelation, we choose Marhuenda,
Molina and Morales (2013) model as the most suitable for the estimation of the low work
intensity indicator. The final results are presented in Figure 2.

Based on Figure 2, we noticed spatial regimes in the low work intensity in the West (Za-
chodniopomorskie, Lubuskie and Dolnoslaskie Voivodeships) and Central (Lodzkie, Swi-
etokrzyskie and Slaskie Voivodeships) Poland between 2005 and 2012. Mazowieckie (with
Warsaw) and Wielkopolskie (with Poznań) regions are characterized by the lowest level of
the indicator.

Future works will focus on estimation of Europa 2020 indicators at more detailed levels
of spatial aggregation, i.e. NUTS 3 or LAU 1. Local authorities demand such information
to conduct adequate social policy. However, due to sample sizes at such low level as LAU
1 (380 areas in Poland) area-level models might not be adequate. Instead, unit-level models
might be useful, but require access to population unit-level data, e.g. from registers or
census.
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Figure 2: Spatial distribution of low work intensity indicator in Poland between 2005 and
2012 estimated using Marhuenda, Molina and Moralez (2013) model.
Codes on map: 02 – Dolnoslaskie, 04 – Kujawsko-Pomorskie, 06 – Lubelskie, 08 – Lubuskie, 10 – Lodzkie, 12 – Malopolskie, 14 – Mazowieckie, 16 – Opolskie, 18 – Podkarpackie,
20 – Podlaskie, 22 – Pomorskie, 24 – Slaskie, 26 – Swietokrzyskie, 28 – Warminsko-Mazurskie, 30 – Wielkopolskie, 32 – Zachodniopomorskie.
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