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Abstract: It seems to be a truism to say that we should pay more and more attention to network
traffic safety. Such a goal may be achieved with many different approaches. In this paper, we put our
attention on the increase in network traffic safety based on the continuous monitoring of network
traffic statistics and detecting possible anomalies in the network traffic description. The developed
solution, called the anomaly detection module, is mostly dedicated to public institutions as the
additional component of the network security services. Despite the use of well-known anomaly
detection methods, the novelty of the module is based on providing an exhaustive strategy of selecting
the best combination of models as well as tuning the models in a much faster offline mode. It is worth
emphasizing that combined models were able to achieve 100% balanced accuracy level of specific
attack detection.

Keywords: anomaly detection; cybersecurity; network traffic monitoring

1. Introduction

The paper presents the results of the RegSOC project in the range of anomaly detection.
The aim of the project was to establish methods and tools dedicated to small and medium-
sized enterprises and public institutions to detect anomalies in their computer networks.
The paper presents a proof-of-concept for a created solution.

RegSOC is a specialized security operations centre (SOC), dedicated mainly to public
institutions, developed according to the Polish cybersecurity strategy. RegSOC, similarly
to other SOC systems, is a centralized organization unit embracing three pillars: people,
technology, and processes.

The first pillar, people, includes highly qualified cybersecurity personnel of different
competencies working inside the proper organizational structure and are able to perma-
nently improve their skills and knowledge in the realm of technological progress, emerging
attack methods, and IT users’ behaviours.

The technological pillar embraces advanced software and hardware solutions for
security monitoring, network infrastructure readiness, event collections, correlation and
analysis, security control, log management, vulnerability tracking and assessment, com-
munication, threat intelligence, and many others. The key element is the SIEM (security
information and event management) system.
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The third pillar consists of SOC processes, run by SOC personnel with the use of tech-
nological equipment. Examples of SOC processes are security monitoring, security incident
management, threat identification, digital forensics and risk management, vulnerability
management, security analysis, etc. Some of them are internal, some are engaged directly
in security services provided for SOC customers.

The SOC organization, processes, and technology are discussed in many publications,
including the [1,2] books.

The RegSOC project is aimed at the development of the SOC prototype, which can
be implemented several times in a cybersecurity infrastructure. The project research is
related to:

• the procedural and organizational model of operation of the regional centres in coop-
eration with the national cybersecurity structure (people, processes);

• the cybersecurity monitoring platform (technology).

The paper is focused on the hardware and software equipment working as network-
based intrusion detection systems (NIDS), able to operate as stand-alone autonomous
devices within a local administration domain, as well as a device integrated with RegSOC.
This NIDS is designed to monitor network traffic between internet service providers and
the network infrastructures of customers (public, commercial) to detect different kinds of
cyber attacks, i.e., signature-based and non-signature based.

Signature-based detection is a process where a unique identifier is created for a given
known threat. This way the threat can be identified in the future by a virus scanner or IDS.
Signatures are defined to look for characteristics within network traffic, e.g., Snort rules [3].
Generally, the attack is known and the protection method, which should be applied, is
known. Most cyber-attacks are detected by this kind of method, but currently, they are not
sufficient for security.

The security problem increases when a vulnerability is explored by an attacker who
immediately applies a new attack method based on this vulnerability. It is identified as
a zero-day attack. There are no signatures for such a threat and in this case, methods
based on behavioural analysis should be applied. The network behaviour may indicate
the attack symptoms. The network behaviour (traffic) can be “typical” or “atypical” with
anomalies. This paper concerns the network traffic investigation to detect anomalies, which
may indicate the symptoms of an attack. To detect anomalies and properly interpret their
meaning, the machine learning approach is used.

Some traffic anomalies may be caused by atypical network users’ operations (software
updates, transferring big files), and some may be symptoms of a known or previously
unknown attack. This paper concerns these methods and is closely related to the anomaly
detection module developed in the RegSOC project.

This paper is organized as follows: it starts with a short description of the whole
consortium motivation to develop a module dedicated to outlier detection; later a more
formal trial of anomaly definition approaches is presented, together with a brief review
of existing anomaly detection approaches that finally led us to selecting two models of
anomaly detection to be used in the module; afterwards, the anomaly detection module
(ADM) with its software and hardware aspects is presented; the next part of this paper
focuses on the application of ADM in a real network traffic analysis, i.e., which the traffic
contained well-known (in time) attacks in the network, and the results of this application
are extensively analysed, explained and discussed. The discussion focuses on a balanced
accuracy-based comparison of the single models as well as on an exhaustive approach built
from more complex meta-models; the paper ends with some conclusions and drafts of
further work related to future ADM development.

2. Motivation

The evolution of cyber-attacks means that the problems a cybersecurity centre must
solve are constantly new and frequently changing [4]. Therefore, we sought an approach to
support the discovery of new phenomena in the IT environment as an essential component
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of the designed comprehensive protection system [5]. Threat detection methods based
on anomaly detection seemed appropriate for this purpose, as they focus on identifying
and assessing abnormal events and states [6–8]. At that time, research papers described
anomaly detection techniques used, for example, to identify fraud [9,10], detect threats
from internal users [11], or detect advanced DDoS attacks [12,13]. In the course of these
studies, researchers adopted various approaches, such as statistical analysis, methods of
classification and clustering, fuzzy sets, approximate inference, neural networks, and other
hybrid techniques. The above solutions achieved satisfactory theoretical results, but when
we started the project, the existing security systems did not use most of them. One of the
reasons for this is that the use of historical datasets during research do not contain data
relevant to current cybersecurity issues. The second is due to the problem of IT environment
variability and its heterogeneity. These are natural features of modern IT systems, but their
high dynamics make it challenging to diagnose atypical events, in particular in the context
of security.

Therefore, during the project, we wanted to develop or adapt anomaly detection
methods [14–16] that would consider the variability of the monitored network, recent
data on threats and security incidents, and dependencies between the objects registered
in the data. By assumption, these were to be interdisciplinary works, using knowledge
in information processing (from statistics and data analyses to artificial intelligence), user
behaviour in the IT system (social engineering, computer forensics), and the technical
aspects of information systems and networks. We aimed to build an adequately tailored
profile of the protected IT environment, using large datasets from simulated and real
networks containing actual observations. An essential aspect of our work was developing
a prototype one could use in a real security system. We decided to implement an anomaly
detection module that could operate autonomously and integrate with the SIEM class
system. The latter made it possible to correlate the results of the anomaly detection module
with events of a different nature originating from other data sources.

3. Related Works
3.1. The Definition of an Anomaly

It is not possible to provide one strict definition of an anomaly. We rather “feel” what
we want to express with such a word; however, a formal definition of an outlier changes as
different approaches try to find them in the data.

During the last decade several working definitions of anomaly/outlier have been
proposed by different scientists. Since the 1950s, the following attempts at outlier definition
have been proposed in [17]: “an outlying observation is one that appears to deviate
markedly from other members of the sample in which it occurs”. The author also tried
to provide two possible causes of the outlier appearance: an extreme manifestation of
the random variability inherent in the data or the result of the gross deviation from the
prescribed experimental procedure (or an error in data acquisition).

Later, in [18] another descriptive definition of an outlier was provided: “An outlier is
an observation that deviates so much from the other observations as to arouse suspicions
that it was generated by a different mechanism”. Such an approach is quite close to one of
the above-mentioned causes of outlier appearance. The Barnett and Lewis definition [19] is
also quite comparable: that an outlier is an observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data.

The key word “inconsistency” seems to be significant for Weisberg [20], who claimed
that an outlier is a case that does not follow the same model as the rest of the data. This
means that the outlier presence may come from the fact that there are observations in the
data that come from two different well-defined models and the number of each model
representative is not comparable (one model samples surpass the other one). That leads to
the common issue of imbalanced data analysis in the classification tasks. In the paper [21]
we may find the incorrect class labelling-based definition of an outlier: an object from class
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A is incorrectly assigned to class B, so from the B class point of view it can be treated as an
outlying observation.

It is also worth mentioning the interpretation-based definition of an outlier’s na-
ture [22]: one group as observations lying outside the data but interpretable as noise and a
second as observations lying outside the data and noise. More comparable proposals of the
outlier definition may be found in [23].

3.2. Anomaly Detection Approaches

In the paper ref. [24] outlier detection methods were divided into six categories:

• statistical-based methods (e.g., [25–28]);
• distance-based methods (e.g., [16,29,30]);
• density-based methods (e.g., [14,15,31]);
• clustering-based methods (e.g., [32,33];
• graph-based methods (e.g., [34]);
• ensemble-based methods (e, g. [35,36]);
• and learning-based methods (e.g., [37–39]).

Below, a short description of each mentioned group will be provided.

3.2.1. Statistical-Based Methods

As a naive statistically based method of outlier detection in one-dimensional data with
a normal distribution, a simple 3σ criterion can be mentioned: a value that differs from the
mean value by more than three standard deviations is considered an outlying one. A more
sophisticated approach is Grubb’s test [40] that may be one- or two-sided.

Another example of an statistical approach is the Gaussian mixture model [41]. In the
paper [42] such an approach was used to detect anomalies in the phasor measurement units
(PMU) of multivariate streaming. On the other hand, in the paper [43] a linear regression
was used to detect anomalies. Furthermore, kernel density estimation-based methods
were used as outlier detection approaches [44]. In the paper [45] adaptive Gaussian kernel
widths were used in two aspects: a larger one to smooth the input data in high-density
regions and a smaller one to detect anomalies in low-density regions.

3.2.2. Distance-Based Methods

In such an approach, distances between all objects become the criterion for detecting
anomalies. Most applications are based on the k-nearest neighbour and the distance
threshold idea [46]. In the paper [47] a modification of such an approach was presented,
based on dynamic programming. The further extension of such an approach may be also
found in [48]. Apart from the above-mentioned applications, a kNN-based approach was
successfully applied in [49,50].

3.2.3. Density-Based Methods

Density-based methods make use of the following observation: an object should be
interpreted as an anomaly when its local density (of other objects) is different from the
local density of its neighbours. One of the most popular methods that is based on such an
approach is the local outlier factor [14]. However, based on the above-mentioned algorithm
a variety of modifications have also been developed [51,52] or [53].

3.2.4. Clustering-Based Methods

Clustering means the search for groups of objects closer to each other than to objects
from other groups and the found partition may become the input for another analytical
task, just to mention classification. However, it is easy to change the interpretation of the
clustering results in such a way that very small groups (or objects not assigned to any
group) can be interpreted as outliers.

A density-based clustering algorithm—called DBSCAN [32]—allows to assign some
objects to any group. This means that such an object is so far from others that it is impossible
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to interpret it as a member of any of the found groups. This means that it should be
interpreted as a kind of outlying observation. Such an interpretation was extended also in
other works, [54] or [55].

3.2.5. Graph-Based Method

Sometimes it is difficult to provide a multidimensional description of objects while it
becomes easier to map the dependencies between them with a graph. In [56], the following
example is provided: when analysing reviewer-reviewed product data it may become
much more important to represent the connections between the reviewer and the product
in a graphical way and later to analyse the connections. Based on such an approach, a
variety of methods have been developed [57–59].

3.2.6. Ensemble-Based Methods

The ensemble approach is very popular in many applications, especially in classifica-
tion [60], in particular AdaBoost [61] or random forests [62]. With such an idea not one but
multiple models are built on training samples and the answer of any of them is taken into
consideration to make the final decision. Accordingly, a set of separated anomaly detectors
may be used for better results of outlier analysis. Such an approach was used in [63] or [64].

3.2.7. Learning-Based Methods

The two most popular groups of anomaly detection methods that are based on widely
understood learning, that exceed the above-mentioned groups, are active learning [65] and
deep learning [66]. In the case of active learning, precisely selected unlabelled samples are
taken into consideration to be manually labelled in the first order. Such an approach helps
to improve the existing models with the update based on critical (boundary) samples [67].
Deep learning methods, on the other hand, try to build a model on unlabelled data on the
basis of labelling provided by typical anomaly detection methods [68,69].

4. Anomaly Detection Module Environment

The anomaly detection module is the Python software was used to detect anomalies in
network traffic in pseudo-real time. It runs in batch mode. The input data are taken directly
from the network interface to which a copy of the traffic from the monitored (sub) network
is redirected. The results of the analysis are saved as CSV files; it is also possible to send
the detected anomalies to SIEM. The statistical anomalies in time and volume are assumed
to be true outliers from dominant normal network traffic.

The primary element of the anomaly detection module is a Sniffer that collects and
analyses packets in given time windows. It has two modes:

• online: based on the Scapy AsyncSniffer [70], collecting and processing packets from a
network, used for pseudo-real-time monitoring;

• offline: reading CSV files, previously created by the online mode. Typically used for
tuning the algorithms or reviewing historical traffic with other anomaly detection
methods.

The first step is establishing a feature vector that is extracted from packets. This vector
may contain any of the TCP/IP headers. Afterwards, aggregation is carried out in a given
time window due to:

• source/destination IP address;
• pairs of IP addresses;
• IP address and port pairs.

One Sniffer instance can simultaneously run many feature vector/aggregation pairs
and save results to a CSV file or send them directly to anomaly detection algorithms.
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4.1. Implemented Anomaly Detection Methods

The anomaly detection module implements two well-known methods of anomaly
detection: the first of them is the robust kernel-based local outlier detection method [15]
and the second is the variational auto-encoding method [71]. As ADM is written in Python
it can be extended by new anomaly detection methods at any time. The presented solution
is also easy to configure even without programming knowledge; it is based on running a
command-line program with input parameters defined in a text file.

4.1.1. Robust Kernel-Based Local Outlier Detection (RKOF)

RKOF (robust kernel-based local outlier detection) is a factor that ranks objects ac-
cording to their atypicality [15]. Instead of LOF [14] the method is based on the weighted
neighbour density at the point rather than on the average neighbour density. As the authors
claim, such a modification improves the possibility of outliers detection even if the number
is comparable to the typical object number in some neighborhood.

The interpretation of obtained factors shows the following: observations with RKOF < 1
should not be considered outliers, while the other (with RKOF > 1) seem to not be typical
observations.

4.1.2. VAE

AE (autoencoder) and VAE (variational autoencoder) are anomaly detection methods
based on neural networks. The network “learns” to reproduce the training data provided
to it, assuming that they are typical values for the system, aiming to minimize the error
in data reproduction. The reconstruction error is the arithmetically calculated difference
between the output and input data of the model. In a running system, the trained model
processes incoming data. In case the predefined reproduction error threshold is exceeded,
an anomaly is detected.

4.2. Model Construction

The prediction model used the TensorFlow technology, which included the Keras API
extension. The featured model contains multiple layers of neural networks.

The first layer is the normalization layer. To achieve a speed up of data processing
(when compared to the sequential approach) normalization is performed on data integrated
into tensors. All parameters in the input vector need to be individually normalized, so the
mean, standard deviation, minimum, maximum, offset, and scale for each are stored in
the tensors. With this solution and consideration of an additional parameter α indicating
the speed of normalization adaptation to changing data, input tensors are normalized in
parallel by the network.

The following layer is variation encoder. A particular encoder extract features from
one-dimensional data. Each dense layer of neurons decreases its size in relation to the
previous one, allowing for a reduction in the number of features. The obtained features are
forwarded to distribution as a diagonal Gaussian, which delivers the results of encoding.

The task of the decoder as a final element of the network is to reconstruct the nor-
malized input data. The results are acquired by moving the encoded data to the neural
network, which most often is the mirror image of the encoder network, excluded the
Gaussian sampling element.

To sum up, apart from the parameters denoted in the normalization layer, a number of
neurons in each layer of the encoder, the activation function for each layer of the encoder,
and a number of neurons in the layer between the encoder and decoder were used in the
prediction model.

4.3. Training and Prediction

Considering that the featured network works not only as the variational autoencoder,
but also includes a normalization layer, it returns not only the network reconstruction
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outcome but also the normalized input data. Therefore, it is possible to calculate the mean
absolute error of the reconstruction, which is the anticipated result.

As a consequence of fitting the network with raw data, specified pipelines for training
and testing the model were created. These functions take into consideration not only,
as it often works, the input and output to compile the loss, but also both the previously
mentioned model outputs.

Moreover, the sampling element used in the variation autoencoder remains the barrier
that backpropagation cannot flow through; however, there exists a solution to this. Adding
random noise to the sampling equation maintains the stochastic characteristic of the element
and lets backpropagation through it.

The last, but not least, part of the training process is fitting the standardizer to decrease
the unwanted differential in the returned information about the reconstruction error. This
element will not only standardize the results in the prediction process but its will also
slowly update the standardization parameters after each prediction time window.

4.4. Data Learning Selection

Due to the processing of large amounts of data, there is a concern about excessive
memory or CPU use during training. Therefore, a selection system has been applied that
limits the volume of data collected for training the model. The implementation is based on
the publication “Catch It If You Can: Real-Time Network Anomaly Detection With Low
False Alarm Rates” [72]. For the previously given time in which the collecting training data
will occur, digitized time slices are determined to be gathered for training purposes. Time
slice data are collected over the entire length of the predefined time window, with a greater
density at the end of the window to emphasize the greater volume of more recent data.

4.5. Processing Time Window

Time window processing with the VAE model is not trivial, requiring the organization
of new learning models and continuous prediction with the current model. Thus, the use of
the autoencoder does not affect the performance of other system components, it is placed
in a separate process. Thanks to this, the autoencoder process conducts training on itself
and provides detection of the anomaly in incoming data. However, the superior class
responsible for supervision over detection can collect training data and process new data by
sending them to the autoencoder. The master class will create a new autoencoder process,
training with collected data as fast as a new training dataset is gathered, while the training
process will not end, anomaly detection will continue using the existing autoencoder. When
the new model completes the learning stage, the master class will terminate the current
autoencoder process and detect anomalies using the newly learned model.

5. Experiments

The experiments were planned to be carried out in an extended version of the virtual
environment mentioned in [73]. However, the number of simulated workstations was
increased to two attacking systems and four victims. The following subsections describe all
experimental components in a more detailed way.

5.1. Hardware and Network Background

For the purpose of carrying out experiments on real network traffic, it became nec-
essary to include artificial points (attackers and victims) in a physical network. As was
already mentioned, these elements were virtual servers: two attackers and four victims.
To assure as close as possible nature of attacks, the attackers and victims were ran on two
different physical servers. Moreover, the ADM was ran on the third physical server.

The whole experiment was ran inside a Łukasiewicz EMAG network and all machines
were connected together via a main LAN switch. This gave us the possibility to mix
the typical network traffic with the forced attack-containing traffic. For the purpose of
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gathering all network traffic (ingoing and outgoing) a mirror port of a main switch was
used. The network configuration and traffic flows are presented in Figure 1.

Figure 1. Network architecture scheme showing the placement of the anomaly detection server on the
background of the inner infrastructure, including LAN workstations, servers with virtual attackers
and victims.

5.2. Data Preparation—Attack Script

As was already mentioned above, the experiment environment contained six virtual
machines: two attackers and four victims. What is worth mentioning that the victim
machines were ran using different operating systems: Ubuntu, Windows, and Kali Linux
(both attackers were Kali Linux).

The goal of the experiment was to check the anomaly detection techniques to detect
attacks performed within the network. It is much more reliable to evaluate anomaly
detection techniques when the anomaly’s present location is known. In such a case the
results may be evaluated as a binary classifier performance.

In our approach we decided to prepare an attack script that implies what kind of
attacks will be run from which attacker on which victim. The schedule contained a variety
of attacks and the scheme is presented in Figure 2.
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VICTIM 1
Ubuntu

VICTIM 2
Windows

VICTIM 3
Windows

VICTIM 4
Kali Linux

ATTACKER 1
Kali Linux

ATTACKER 2
Kali Linux

A2.4: FTP

A2.7: Flood

A2.5: Flood

A2.3: Flood

A2.2: Reverse
shell + scripts

A2.1: SSH

A1.7: Botnet

A1.1: FTP

A1.3: RDP

A1.5: Flood

A1.6: SSH

A1.4: RDP

A1.2: Flood

A2.6: Reverse
shell + sending

data

Figure 2. Diagram of the performed attacks presenting two attackers and four victims as well as
planned attacks.

The time aspect of each attack performance is described in the following subsection.

5.3. Collected Data Pre-Processing

The experiment was conducted using the scenario described in Section 5. Due to
technical reasons, the botnet attack on victim 1 did not take place. Additionally, we
observed some unexpected traffic between attacker 2 and victim 4. For a better assessment
of the ADM system, we decided to clean the analysed dataset and remove non-planned
actions between the hosts. During further analysis, we identified a large number of flows
directed towards the broadcast hosts. Thus, three broadcast hosts with the biggest number
of flows were also removed from the analysed dataset. Finally, these two approaches to
the data were examined, called, pre-processed and broadcast, respectively. The final attack
timeline is presented in Figure 3.

Figure 3. Graphic presentation of the moments of the attacks and their durations (for each attacker
separately).
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The attacks were performed at different times of the day during the work week. The
first attack took place in the afternoon. It can be noted that intrusions were executed in
several combinations—only one attack in a given time and two or three overlapping attacks.

5.4. Results

Anomaly detection was performed with the ADM tool and two methods with different
parameters. For the RKOF method, we set the number of neighbours to be equal to 100 and
the window length equal to 10, 20, 30, and 60 min. For the VAE method, we considered
three window lengths and connected them with the batch size and batch number. For a
window length equal to 60 min, the batch size was 3 and the batch number was 20. In the
case of 120 min they were 5 and 12, and for 180 min these parameters were set as 3 and 30,
respectively. In all summaries presented in this paper, the window length is presented next
to the name of the method, e.g., RKOF10.

Every row of collected data contains a single flow—aggregated for every minute of
network traffic statistics between two hosts, such as the number of packets or port flags.
Apart from the IP addresses and timestamps, the input dataset contains 121 attributes. The
pre-processed dataset has 230,664 flows and the broadcast dataset has 81,027. The number
of ground-truth anomalies (flows that occur at the time and between hosts specified in the
scenario) in both cases was the same, 4371. Table 1 contains the number and percentage of
detected anomalies.

Table 1. A comparison of the number of samples recognized as anomalies and the percentage of
actual anomalies.

Method Number of Anomalies Percentage of Anomalies

Pre-processed data

RKOF10 8262 3.58
RKOF20 5840 2.53
RKOF30 6252 2.71
RKOF60 4113 1.78
VAE60 8060 3.49
VAE120 22,703 9.84
VAE180 20,156 8.74

Broadcast data

RKOF10 7466 9.21
RKOF20 10,715 13.22
RKOF30 9208 11.36
RKOF60 4929 6.08
VAE60 6614 8.16
VAE120 10,629 13.12
VAE180 9514 11.74

The analysed methods usually report more anomalies than those arising from con-
ducted attacks. It can be justified by the fact that apart from artificial intrusions there
was normal network traffic during the whole experiment. For the pre-processed dataset,
the lowest percentage of anomalies was observed for RKOF60 while the highest was for
VAE120. In the case of the broadcast dataset, the RKOF60 also had the lowest percentage of
anomalies but RKOF20 had the highest value. Based on the obtained results, we calculated
classification quality measures (see Table 2).
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Table 2. Classification performance measures for several models of anomaly detection.

Method Balanced Accuracy Sensitivity (TPR) Specificity (TNR)

Pre-processed data

RKOF10 0.7337 0.4944 0.9730
RKOF20 0.7598 0.5351 0.9845
RKOF30 0.8251 0.6651 0.9852
RKOF60 0.7438 0.4962 0.9914
VAE60 0.6781 0.3844 0.9718
VAE120 0.6700 0.4319 0.9080
VAE180 0.7049 0.4894 0.9204

Broadcast data

RKOF10 0.7575 0.5793 0.9356
RKOF20 0.7390 0.5845 0.8936
RKOF30 0.7976 0.6767 0.9185
RKOF60 0.7777 0.5864 0.9691
VAE60 0.5751 0.2237 0.9265
VAE120 0.5441 0.2146 0.8736
VAE180 0.6244 0.3528 0.8960

The assessment of the results was based on three measures: balanced accuracy, sen-
sitivity, and specificity. The best results measured by balanced accuracy were achieved
with the RKOF30 method and the pre-processed dataset. In this case, the sensitivity was
66% which means that only that many anomalies were correctly identified. On the other
hand, specificity in all the considered cases was very high. Based on the results in a Table 2,
we could say that the ADM tool poorly detected true anomalies in the data. To verify the
intrusion detection ability, we conducted additional calculations related to attacks only
(Table 3).

The results in Table 3 show that the effectiveness of the method depends on its
parameters and the type of attack. Most of the RKOF variants detected brute-force attacks
with very high accuracy. In particular, brute-force SSH was only detected by RKOF methods
and for broadcast data. In turn, VAE methods could better detect some flood intrusions. For
the reverse shell, it is important to remove broadcast addresses, and then the RKOF methods
can identify such a kind of attack. On average, the best results for the pre-processed data
were obtained with the RKOF30 method. For broadcast data, RKOF30 performed the best
based on the mean value and RKOF60 based on the median statistic. The conclusion from
the conducted analysis is the link between the method and type of attack. Thus, in the next
step, we proposed an ensemble approach that combined all the considered methods in
anomaly detection.

Every point in Figure 4 presents an anomaly detected by any of the considered methods
and the colour shows the number of methods that detect this intrusion. Red stripes in the
background illustrate the time ranges of attacks and the intensiveness of colour shows
the number of these attacks in a given time. It can be noted that these methods are
complementary to each other and their combination is justified. We considered all possible
combinations of these methods and calculated the quality measures. The ten best results
according to the balanced accuracy measure are presented in Table 4.
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Table 3. Percentage of flows within attacks labelled as an anomaly.

Attack RKOF10 RKOF20 RKOF30 RKOF60 VAE60 VAE120 VAE180

Pre-processed data

A1.1: Brute-force FTP 100.00 80.83 100.00 87.08 51.67 51.25 40.83
A1.2: Flood 53.72 58.78 65.96 37.77 60.64 63.83 56.12
A1.3: Brute-force RDP 99.45 99.72 80.66 34.81 20.44 70.17 22.93
A1.4: Brute-force RDP 100.00 100.00 100.00 72.65 33.43 1.66 0.55
A1.5: Flood 14.75 36.07 87.70 41.80 75.41 86.07 87.70
A1.6: Brute-force SSH 2.08 17.50 94.58 30.83 9.79 7.71 2.29
A2.1: Brute-force SSH 1.10 2.76 0.55 19.61 0.00 0.00 0.00
A2.2: Reverse shell + scripts 0.32 0.96 0.64 66.99 40.71 76.60 76.28
A2.3: Flood 47.24 50.28 68.23 50.83 63.26 65.19 60.77
A2.4: Brute-force FTP 50.55 49.45 66.57 82.87 19.89 19.89 86.19
A2.5: Flood 53.28 71.31 75.41 100.00 81.15 83.61 90.98
A2.6: Reverse shell + sending data 49.69 50.93 48.45 24.33 27.22 27.22 76.70
A2.7: Flood 71.70 86.08 90.80 53.30 79.01 80.66 88.21

Mean 49.53 54.21 67.66 54.07 43.28 48.76 53.04
Median 50.55 50.93 75.41 50.83 40.71 63.83 60.77

Broadcast data

A1.1: Brute-force FTP 100.00 100.00 100.00 90.42 28.33 2.50 8.33
A1.2: Flood 2.13 23.67 50.53 58.78 30.59 39.63 40.43
A1.3: Brute-force RDP 100.00 100.00 78.45 32.60 3.87 0.55 0.00
A1.4: Brute-force RDP 100.00 100.00 100.00 71.27 33.15 0.00 0.28
A1.5: Flood 9.84 24.59 42.62 40.16 59.02 80.33 81.15
A1.6: Brute-force SSH 99.17 94.58 94.58 37.29 1.67 1.67 0.83
A2.1: Brute-force SSH 99.45 34.81 23.48 19.89 0.00 0.00 0.00
A2.2: Reverse shell + scripts 76.28 75.64 75.64 78.21 35.90 54.17 76.28
A2.3: Flood 2.21 35.08 52.49 75.69 20.99 20.44 25.97
A2.4: Brute-force FTP 51.38 51.38 96.13 85.08 19.89 19.89 85.36
A2.5: Flood 12.30 31.97 52.46 99.18 57.38 68.85 87.70
A2.6: Reverse shell + sending data 50.10 50.31 51.75 55.67 24.12 23.09 54.85
A2.7: Flood 5.19 14.15 47.64 54.72 31.60 38.68 59.43

Mean 54.46 56.63 66.60 61.46 26.65 26.91 40.05
Median 51.38 50.31 52.49 58.78 28.33 20.44 40.43

Figure 4. Anomalies in the traffic (vertical bars) and correctly recognized anomalies (points) for each
model separately; the more intense the colour of the point, the more models recognized the anomaly.
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Table 4. Top 10 method combinations arranged by balanced accuracy.

Methods BACC Sens. Spec.

Pre-processed

RKOF20, RKOF30, RKOF60, VAE60 0.9162 0.8829 0.9495
RKOF10, RKOF30, RKOF60, VAE60 0.9152 0.8895 0.9409
RKOF10, RKOF20, RKOF30, RKOF60, VAE60 0.9140 0.8895 0.9384
RKOF10, RKOF30, RKOF60 0.9138 0.8650 0.9626
RKOF10, RKOF20, RKOF30, RKOF60 0.9124 0.8652 0.9595
RKOF30, RKOF60, VAE60 0.9075 0.8595 0.9554
RKOF20, RKOF30, RKOF60 0.9071 0.8403 0.9740
RKOF10, RKOF30, RKOF60, VAE180 0.9026 0.9165 0.8887
RKOF20, RKOF30, RKOF60, VAE180 0.9016 0.9053 0.8978
RKOF10, RKOF20, RKOF30, RKOF60, VAE180 0.9013 0.9165 0.8861

Broadcast

RKOF10, RKOF30, RKOF60 0.8893 0.9410 0.8376
RKOF10, RKOF60 0.8876 0.8673 0.9078
RKOF10, RKOF60, VAE60 0.8792 0.9170 0.8414
RKOF10, RKOF60, VAE180 0.8787 0.9405 0.8168
RKOF30, RKOF60 0.8749 0.8545 0.8954
RKOF10, RKOF30, RKOF60, VAE60 0.8665 0.9570 0.7761
RKOF10, RKOF20, RKOF30, RKOF60 0.8655 0.9410 0.7901
RKOF10, RKOF30, RKOF60, VAE180 0.8646 0.9737 0.7555
RKOF10, RKOF60, VAE60, VAE180 0.8643 0.9430 0.7856
RKOF10, RKOF60, VAE120 0.8626 0.9286 0.7966

It can be seen that the ensemble approach had a better ability for anomaly detection
than the single-method approach. A combination of the different methods allows us to
obtain balanced accuracy above 0.9 for pre-processed data and above 0.85 for broadcast
data. Values of sensitivity and specificity are also higher.

Furthermore, the analysis with combined methods was conducted only within planned
attacks. For each method combination, the percentage of correctly detected flows was
calculated and the obtained results were averaged by method combination. If there were
the same results for a few approaches, then the simplest—one with the lowest number of
utilized methods—was chosen. The results for the five best ensembles for each dataset are
presented in Table 5.

For selected intrusions, we could achieve 100% efficiency. In the case of pre-processed
data, the best method combined with RKOF10, RKOF30, RKOF60, and VAE180 had 100%
accuracy for 6 out of 13 intrusions. The most difficult attack to detect was the A2.1: Brute-
force SSH, only possible to detect in only 19.61% of the flows labelled as anomalies. Another
interesting case is the A1.2: Flood, where the percentage of detected anomalies was equal
to 100% only if the RKOF10 was included.

Removing the broadcast addresses allowed us to obtain a higher overall accuracy. For
the RKOF10, RKOF30, RKOF60, VAE60, and VAE180 ensemble obtained the lowest score
for the A1.5, A2.2, and A2.7 attacks. Detection of the A2.1: Brute-force SSH intrusion was
problematic for the pre-processed data as it was detected with 99.45% accuracy.

To sum up, we proposed an approach for anomaly detection based on two pillars,
appropriate data preparation and the combination of different methods for anomaly detec-
tion. The analysis of two datasets showed that removing the broadcast addresses improved
the recognition efficiency of various kinds of attacks. We observed that intrusion detec-
tion was strictly connected with the used method and separately these methods perform
rather poorly. The combination of the RKOF method with various window lengths and
variational autoencoder allowed anomalies detection with almost 97% accuracy measured
as an average over the conducted attacks. We observed that in the final solution, only five
out of seven investigated approaches were used which shows that greedy ensembling led
to worse results and there is a need to look at optimal combinations.
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Table 5. Percentage of flows within attacks labelled as an anomaly for method ensembles.

Pre-Processed Data

Attack\Methods

RKOF10,
RKOF30,
RKOF60,
VAE180

RKOF20,
RKOF30,
RKOF60,
VAE60,

VAE120,
VAE180

RKOF20,
RKOF30,
RKOF60,
VAE120,
VAE180

RKOF20,
RKOF30,
RKOF60,
VAE60,
VAE180

RKOF20,
RKOF30,
RKOF60,
VAE180

A1.1: Brute-force FTP 100.00 100.00 100.00 100.00 100.00
A1.2: Flood 99.73 96.01 96.01 95.21 90.69
A1.3: Brute-force RDP 100.00 100.00 100.00 100.00 100.00
A1.4: Brute-force RDP 100.00 100.00 100.00 100.00 100.00
A1.5: Flood 98.36 98.36 98.36 98.36 98.36
A1.6: Brute-force SSH 94.58 94.58 94.58 94.58 94.58
A2.1: Brute-force SSH 19.61 19.61 19.61 19.61 19.61
A2.2: Reverse shell + scripts 87.50 87.50 87.50 87.50 87.50
A2.3: Flood 100.00 97.24 96.96 96.96 95.86
A2.4: Brute-force FTP 100.00 100.00 100.00 100.00 100.00
A2.5: Flood 100.00 100.00 100.00 100.00 100.00
A2.6: Reverse shell + sending data 98.97 98.97 98.97 98.97 98.97
A2.7: Flood 99.76 99.76 99.76 99.76 99.76

Mean 92.19 91.70 91.67 91.61 91.18
Median 99.76 98.97 98.97 98.97 98.97

Broadcast data

Attack\Methods

RKOF10,
RKOF30,
RKOF60,
VAE60,
VAE180

RKOF10,
RKOF30,
RKOF60,
VAE180

RKOF10,
RKOF30,
RKOF60,
VAE60,
VAE120

RKOF10,
RKOF20,
RKOF60,
VAE60,

VAE120,
VAE180

RKOF10,
RKOF20,
RKOF60,
VAE120,
VAE180

A1.1: Brute-force FTP 100.00 100.00 100.00 100.00 100.00
A1.2: Flood 99.73 99.73 99.73 91.22 91.22
A1.3: Brute-force RDP 100.00 100.00 100.00 100.00 100.00
A1.4: Brute-force RDP 100.00 100.00 100.00 100.00 100.00
A1.5: Flood 86.89 86.89 86.89 86.07 86.07
A1.6: Brute-force SSH 99.17 99.17 99.17 99.17 99.17
A2.1: Brute-force SSH 99.45 99.45 99.45 99.45 99.45
A2.2: Reverse shell + scripts 87.18 87.18 87.18 87.18 87.18
A2.3: Flood 100.00 100.00 100.00 98.62 98.62
A2.4: Brute-force FTP 100.00 100.00 98.62 100.00 100.00
A2.5: Flood 100.00 100.00 100.00 100.00 100.00
A2.6: Reverse shell + sending data 100.00 100.00 100.00 100.00 100.00
A2.7: Flood 87.97 87.74 77.83 87.03 86.79

Mean 96.95 96.93 96.07 96.06 96.04
Median 100.00 100.00 99.73 99.45 99.45

6. Conclusions and Further Works

In this paper, a complete and configurable tool for the improvement of network
security was presented. ADM was designed as an addition to existing cybersecurity
solutions that runs in real time. The ADM tries to detect non-typical network traffic
descriptions without trying to explain them. ADM was developed as a part of a wider
project called RegSOC [6,7].

The presented ADM has the ability to work in two modes:

• online: such a mode is dedicated to the application phase when the anomaly detection
models are trained sufficiently to detect anomalies in a network traffic description and
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it is possible to generate reports summing up the detected anomalies (to be further
proceeded by a regional security operator);

• offline: a mode for tuning an anomaly detection method with data of known anomaly
positions; such a mode helps to tune anomaly detection methods much faster than in
the online (almost real-time) mode.

Apart from the above-mentioned two modes of operation, ADM provides two methods
of anomaly detection—RKOF and VAE—and each of them may operate independently on
separate network traffic descriptions. Moreover, it is possible to use several of them (e.g.,
several RKOF-based models with different parameters) at the same time. Thanks to this, it
is possible to develop an ensemble-based voting model pointing to whether we there is an
anomaly or not. The suggested exhaustive strategy of the best model of anomaly detection
search should be easily extended to some heuristic search, such as climbing down.

The above-described features help to conclude the strongest points of the ADM:

• the ADM is an autonomic and complete solution, based on well-known methods of
anomaly detection, also equipped with strategies to train and tune;

• the ADM was developed as an additional tool to complement other network monitor-
ing systems, e.g., ElasticSearch [74];

• it is expected that the ADM may detect zero-day attacks whose signatures remain
unknown for signature-based systems because the ADM is a stream-based system;

• thanks to this, it is possible for the ADM to detect occurrences that are not detected by
other tools, i.e., signature-based;

• the methodology of the tuned model is also provided with the module.

In conclusion, the ADM may be an additional tool to improve network security. The
gathered data are publicly available at http://ibemag.pl/pl/szczegoly-projektow#RegSOC
(in the Available Datasets section). Moreover, the tool is still being developed to provide
more anomaly detection method implementations, and it is still bing tested on new attack
scenarios. It is expected that these data analysis results will be published soon.
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